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Synopsis 

The dynamic mechanical properties of elastomers are of vital importance in determining the 
product design/performance relationship. Unfortunately, the statistical theory of Gaussian networks, 
commonly used for the ideal rubbery state, cannot adequately model the moduli of elastomers in 
engineering applications. The WLF equation, although not originally designed to predict moduli, 
has a functional form that predicts moduli for the range from Tg to 100°K plus Tg. A hybrid equation 
which incorporates elements of the WLF equation and the statistical theory of Gaussian networks 
in an ideal rubbery state has been developed for explaining the mechanical spectrum of elastomeric 
materials. The new equation satisfactorily models the mechanical properties for both filled and 
unfilled elastomers. This model shows that filler loading tends to broaden the relaxation spectrum. 
This finding agrees with a previous study on the viscosity of uncured elastomer-filler systems. 

INTRODUCTION 

Elastomers have been used as engineering materials in applications such as 
shock and vibration isolators for many years. In spite of this, we still lack a 
comprehensive understanding of the mechanical properties of elastomers at  
various filler loadings. Traditionally, elastomers are treated as materials in a 
classical “nonrelaxation” state. (For discussions of relaxation phenomena, see 
Refs. 1-3). As such, the theory of statistical mechanics of a network structure 
can be applied to describe the mechanical properties. Using this approach, 
Treloar4 states that the elastic modulus of elastomers can be expressed as E = 
SpRTIM,, where R is the gas constant, T is the temperature, p is the density, and 
M ,  is the molecular weight per crosslinked unit. From this theory of rubber 
elasticity, we can conclude that the modulus of “ideal rubbers” will increase with 
increasing temperature. An “ideal rubber” is defined as a rubber which is ca- 
pable of storing all energy during deformation with no mechanisms for energy 
dissipation. Unfortunately, most elastomeric compounds do not behave as “ideal 
rubbers” over a broad service temperature range. Therefore, a study of the 
mechanical spectra of elastomers is needed to determine the temperature de- 
pendence of mechanical properties. 

MECHANICAL SPECTRA OF POLYMERS 

The mechanical spectra of polymers can be represented as in Figure 1. At very 
high temperatures in the “liquid flow” region uncrosslinked polymers behave 
as viscous liquids. In this region, a structural relaxation time 7 of less than 0.1 s 
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Fig. 1. The mechanical spectrum of polymers. 

is common. The temperature in this region is commonly used in processing 
plastics. The temperature slightly below this region is the “rubbery flow” region. 
The structural relaxation time of molecules in this temperature region is on the 
order of 0.1-1 s. This is the processing temperature region of uncrosslinked 
elastomeric materials. With a further decrease in temperature, the “rubbery 
state” (or rubbery plateau) region will appear. Here, the structural relaxation 
time of nonvulcanized and vulcanized elastomers have been discussed recently 
by Hsich, Zurn, and A m b r o ~ e . ~ > ~  

As temperature further decreases from the “rubbery plateau” region, the 
mobility of the polymer chains decreases. In this “glass transition” region, the 
structural relaxation time increases to lo2 to lo4 s, and the mechanical loss factor, 
tan 6, of the polymers in this region is also high. A t  the low-temperature end 
of the glass transition region, there is a glass transition temperature T,, in which 
the structural relaxation time is about 1800 s . ~  The glass transition temperature 
also can be defined as the intersection point between the slope of the modulus 
in the glassy state region and the slope in the glass transition region. Below the 
glass transition temperature, polymeric materials will be in the “glassy state,” 
and their structural relaxation times-are greater than lo4 s. Generally, the use 
of materials as thermoplastics or elastomers will depend on the glass transition 
temperature, i.e., whether it is above or below room temperature. 

The importance of understanding the structural relaxation spectra is seen in 
the following examples. In order to control the properties of polymers, one must 
know how to effectively use the structural relaxation time during material pro- 
cessing. 

It is a common practice in polymer processing to increase the mechanical 
strength by inducing molecular orientation through stretching of the molecules. 
However, in order to tailor this supermolecular structure, one must be able to 
predetermine an optimum structural relaxation time which is equivalent to de- 
termining a particular operating temperature. In this case, the structural re- 
laxation time at  molecular stretching must be longer than the time required to 
freeze-in the desired structure during the cooling or quenching stage. If this 
condition is met, once the structure is formed, the molecules cannot reorient or 
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relax back to their original unstretched state during cooling. On the other hand, 
the structural relaxation time must be short enough (this is equivalent to a 
particular temperature or modulus as shown in Fig. l), so that the molecules can 
be easily stretched without permanently fracturing the material. For typical 
thermoplastic materials, the optimum structural relaxation time during mo- 
lecular stretching is on the order of 100 s. The actual value will depend on the 
operating speed of the process. As can be seen from Figure 1, the optimum 
structural relaxation time for molecular stretching is at the high temperature 
end of the glass transition region and at  a temperature somewhat above the glass 
transition temperature. 

In order to relieve thermal stress, one should anneal glassy polymers at long 
structural relaxation times or a t  low temperatures. Typically, a temperature 
just below the glass transition temperature is most satisfactory. In this way, 
the thermal stresses in glassy polymers can be easily released without fear of 
reforming those stresses during quenching to room temperature. 

We have discussed the importance of understanding mechanical spectra (or 
structural relaxation spectra) in using polymeric materials. Snowdons also has 
discussed the use of dynamic mechanical properties of elastomers in engineering 
material design. Kelley and Williamsg have discussed the use of mechanical 
spectra in predicting the fatigue life of elastomers. As has been discussed by 
H s i ~ h , ~ J ~  the physical and mechanical properties of glassy polymers will depend 
on the thermomechanical history of those polymers. In the rubbery state region, 
the mechanical properties can be tailored through the “interaction matrix,” as 
has been discussed by Kelley and Wil l iam~.~ More recently, a method of qual- 
itative control on mechanical properties of elastomers by preprogramming cure 
conditions and/or filler loading has been d e v e l ~ p e d . ~ , ~ J ~ J ~  In the discussion 
that follows, additional details about the effective use of elastomers as engineering 
materials via their mechanical spectra is presented. 

MECHANICAL SPECTRA OF ELASTOMERS AND FILLER 
EFFECT 

Classical Theory of Rubber Elasticity 

Flory13 has stated that elastomeric materials can be considered to be in a 
nonrelaxation state and to have a “perfect network” structure. The “perfect 
network” is defined as having no free chain ends; i.e., the primary molecular 
weight M is infinite. Then, from the statistical theory of Gaussian networks in 
an ideal rubbery state,4 the elastic modulus of a rubbery material can be ex- 
pressed as 

E = (3pR/Mc)T (1) 
where each of the symbols are as described earlier. For an ideal rubber, the 
elastic modulus (or Young’s modulus) E is equal to three times the shear modulus 
G. However, in practice, all networks have free chain ends which may be re- 
garded as flaws in the structure. By considering these network defects, Flory13J4 
assumed that any real network must contain terminal chains bound at one end 
to a crosslinkage and terminated at  the other by the end (free end) of a primary 
molecule. Then, the elastic modulus of a rubbery material can be modified from 
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eq. (1): 

E = (3pR/Mc)T(1 - 2M,/M) (2) 
As we can see from eqs. (1) and (a), the modulus of an ideal rubber is linearly 
proportional to the temperature. It should be noted that the ideal rubbery state 
considered by Flory13 and others is a nonrelaxation state in which there is no 
mechanical energy dissipated during deformation. In such a case, the mechanical 
loss factor, tan 6, is negligibly small. This, of course, is not true for most engi- 
neering materials which, in many cases, have substantial amounts of energy 
dissipated during deformation. Also, in real elastomers ideal behavior is not 
exhibited until the temperature is much higher than Tg. In the following section, 
this is demonstrated experimentally. 

Experimental Results on Mechanical Spectra of Elastomers 

The elastomer chosen for the study of mechanical spectra is natural rubber. 
Because natural rubber has a large primary molecular weight and low tan 6 (at 
room temperature and low filler loadings), it is considered to be an ideal rubber. 
The samples for study were prepared from the following recipe at various filler 
loadings: 

Ingredient 
Natural rubber (SMR 5CV) 

phr 
100 

Reogen 1 
Stearic acid 1 
Zinc oxide 5 
Agerite HP-S 1 
Agerite resin D 1 
Flexzone 3C 1.5 
Wax 2 
NOBS special 0.9 
Monex 0.2 
Sulfur 1.1 
Dicup 40C 2 

The filler used was carbon black N-330 from 0 to 50 phr (parts per hundred 
rubber). The samples were cured at 153°C for 10 min. The dynamic mechanical 
properties were recorded from a rheometrics mechanical spectrometer (RMS) 
operated in a torsion-rectangular testing mode with 1.5% strain at  10 rad/s an- 
gular frequency. The temperature for recording data ranged from -120°C to 
160OC. The shear storage modulus G' and tan 6 vs. temperature for three dif- 
ferent filler loadings are shown in Figures 2 and 3, respectively. The mechanical 
spectra of cured natural rubber is very similar to that of uncured natural rubber 
reported previ0us1y.l~ However, the modulus of cured rubber is about one 
decade higher than that of the uncured rubber. The glass transition temperature 
Tg and relaxation peak temperature Trp are at -61°C and -55"C, respectively. 
They are not affected by filler loading, as can be seen in Figures 2 and 3. 

Since the temperature dependent behavior of mechanical properties is of 
primary interest in the use of elastomers as engineering materials, the shear 
storage moduli G' were plotted vs. temperature from -61°C to 160°C at filler 
loadings of 0, 10, 20,30,40, and 50 phr, as shown in Figures 4-9. Careful ex- 



FILLED AND UNFILLED ELASTOMERS 

3 

3 

3 m 

9 

0 

? 

0 CD I 

417 



418 HSICH, YANYO, AND AMBROSE 

v 
0- 
0 

I 

I I I 1 



FILLED AND UNFILLED ELASTOMERS 419 

10'"- 

109 - 

- 
f v 
$ 108- 

o_ 

m 

t 

0 

107 - 

106 - 

Fig. 4. G' vs. T for natural rubber a t  0 phr filler loading [(a) experimental data; (.....) WLF 
equation; (-) hybrid equation]. 

amination of these data reveals some interesting trends. A t  high filler loadings, 
G' decreases with increasing temperature from Tg to 16OOC (Figs. 8 and 9). A t  
20 or 30 phr filler loading, G' continues to decrease from Tg to room temperature, 
but then levels off to a constant value up to 160°C (Figs. 6 and 7). Finally, at 
low filler levels, G' decreases from Tg to room temperature, but actually increases 
from room temperature to 160OC. Such modulus increases with increasing 
temperature is behavior expected of an ideal rubber as discussed above. It is 
apparent that many elastomeric compounds, particularly in the service envi- 
ronment of most engineering materials, do not behave as ideal elastomers. For 
this reason, a model is needed for predicting mechanical properties of elastomers 
from Tg to high service temperatures. 

A Hybrid Model of Mechanical Spectra of Elastomers 

The mechanical properties of elastomers depend on the environmental tem- 
perature, the glass transition temperature, and the shape of the relaxation 
spectrum. For example, if Tg is close to room temperature and/or the structural 
relaxation spectrum is broad, then it is unlikely that the elastomeric material 
will behave as an ideal rubber over the entire usage temperature range. 
Therefore, the phenomenon of glass transition must be included in the inter- 
pretation of the mechanical spectra in the environmental temperature range of 
interest. 

In the glass transition region, many thermodynamic, physical, mechanical, 
electrical, and chemical properties of polymers undergo striking changes. The 
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Fig. 6. G’ vs. 7’ for natural rubber a t  20 phr filler loading (see Fig. 4 for symbols). 

Fig.7. C’vs. T for natural rubber a t  30 phr filler loading (see Fig. 4 for symbols). 
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Fig. 8. G’ vs. T for natural rubber a t  40 phr filler loading (see Fig. 4 for symbols). 

Fig. 9. G’ vs. T for natural rubber a t  50 phr filler loading (see Fig. 4 for symbols). 
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most obvious are those that occur in mechanical properties. For example, 
modulus and viscosity change by a factor of 103 over the glass transition region. 
There are many theories and hypotheses which are derived either from ther- 
modynamic or relaxation aspects on the glass transition.llJ2J6 None of these 
explanations by themselves can be used to fully characterize glass transition. 
A complete explanation probably lies in a blend of these theories. Nevertheless, 
one of the most popular theories on the glass transition is the WLF equation.17 
In this equation, aT is the shift factor defined as the ratio of the relaxation time 
at  temperature T to the relaxation time at  the glass transition temperature T,, 
for a polymer in the temperature range from Tg to Tg + 100°K. The expression 
for aT can be written as17 

(3) 
where C1 and Cz are constants which relate to the free volume and the difference 
of thermal expansion between the liquid and the glassy state of the polymer, 
respectively. In fact, the WLF equation can be correlated with Doolittle's free 
volume theory of viscosity in the glass transition region.18 Then, the viscosity 
77 at any given temperature T can be expressed as 

In aT = -C1(T - Tg)/C2 + (T  - T,) 

A t  temperatures above Tg and for nonideal rubbery behavior, G* and G', the 
complex and storage dynamic moduli, are decreasing functions of temperature 
similar to the steady flow viscosity. Therefore, the WLF form was used as a 
preliminary prediction of G* or G': 

where G(T,) is the modulus at  Tg. From eq. (5), we can see that the modulus 
decreases with increasing temperature in the glass transition region. However, 
for elastomeric materials that behave as an ideal rubber, the modulus would 
increase with increasing temperature as shown in eqs. (1) and (2). Therefore, 
in order to predict the mechanical properties of elastomers over a broad tem- 
perature range, we need to develop a hybrid equation which includes aspects of 
both glass transition and rubber elasticity. Since a generalized autocorrelation 
function has served well to explain relaxation phen0menon,5-~.~J' an autocor- 
relation will be used again in modeling the mechanical properties of elastomers 
from the glassy to rubbery state. The hybrid equation for the shear modulus 
is expressed as 

where Go is the shear modulus a t  a reference temperature To, the lowest tem- 
perature for an ideal rubbery state. If G ( T g )  is much larger than Go [or G(Tg)/T 
>> Go/To), then eq. (6) becomes the WLF form as shown in eq. (5). On the 
other hand, if the temperature in question is much higher than the glass transi- 
tion temperature (i.e., T >> Tg)  and C1 is large, then eq. (6) has the form of the 
elastic modulus expression shown in eqs. (1) and (2). This is true because the 
exponential term in eq. (6) becomes negligibly small. When the relationships 
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of G (T,)/T to Go/To and T to Tg are intermediate to those extremes discussed 
above, the WLF and/or elastic modulus equations are inappropriate by them- 
selves for describing the polymer mechanical spectrum. It is in these instances 
when a combination of the two (the hybrid equation) is needed. 

Equation (6) was used to fit the data of the shear storage modulus vs. tem- 
perature in Figures 4-9. The constants C1 and C2 and Go/To of the WLF 
equation and new model were determined by a least-squares minimization using 
Powell’s method of conjugate dire~ti0ns.l~ Mathematically, Powell’s algorithm 
minimizes the sum of the squared error between the normalized experimental 
points and the function to be fit by altering the constants of the function. Over 
several iterations, the total error can be reduced to a minimum, in this case, 
leading to the “best fit” values of the constants listed in Table I. 

For filler loadings greater than 30 phr the values for Go/To at  high filler 
loadings decrease. In fact, at 50 phr carbon black, the value of Go/To is negligibly 
small compared to values a t  low filler content. This is due to the fact that the 
lowest temperature for ideal rubbery behavior, TO, if it exists a t  all, increases 
dramatically at high filler contents. Ideal behavior is not expected of a highly 
filled rubber because loading provides an energy dissipation mechanism. 

The results of calculations from the new hybrid model were plotted in Figures 
4-9 along with the experimental data. There is excellent agreement between 
the experimental results and those calculated from the hybrid model at all filler 
loadings. Results obtained from the WLF equation also are shown in Figures 
4-9 for the purpose of comparison. The WLF equation, even though not in- 
tended to describe the mechanical spectra of elastomers, does very well at high 
filler loadings (Fig. 8 and 9). This is probably due to the broadening effect that 
high filler loadings have on the mechanical spectrum. In Figures 4 and 5, a t  
temperatures considerably above the glass transition, the rubber at low filler 
loadings behaves as if in the ideal rubbery state. The hybrid equation (6) models 
such behavior and shows an increasing modulus in the rubbery region. An ex- 
panded temperature scale in Figure 5 illustrates this more clearly. As filler 
loading increases up to 20 or 30 phr, the upturn behavior of modulus with in- 
creasing temperature, starts to vanish as shown in Figures 6 and 7. When filler 
loading increases to 40 phr, the transition region from glassy to rubbery becomes 
broad. At  this point, the rubbery plateau region is overshadowed due to the 
broadening phenomenon. Indeed, at high filler loadings, the constant Go/To 
is negligibly small compared with Go/T in the hybrid equation (6). In this case, 
the hybrid equation (6) is essentially the same as the WLF equation. The data 
in Figures 8 and 9 and Table I substantiate this phenomenon, The broadening 

TABLE I 

Filler Hybrid equation WLF equation 
loading cz GoPo C2 
(phr) c1 ( O K - ’ )  (dyn-cm-2-oK-1) c1 (OK-’) 

0 11.59 18.40 3.0 x 104 6.45 3.52 
10 10.45 16.81 3.7 x 104 6.32 4.36 
20 8.53 15.66 5.0 x 104 5.93 5.44 
30 7.45 14.84 7.4 x 104 5.50 7.28 
40 5.66 11.39 4.4 x 104 5.20 9.20 
50 4.99 10.84 0 4.99 10.84 
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of the structural relaxation spectrum with increasing filler loadings for cured 
rubbers agrees with those results of a previous study on the viscosity of uncured 
rubbers.15 A broadening of the chemical relaxation spectrum by increasing filler 
loadings also has been found in a study of the cure r e a c t i ~ n . ~ > ~ J l  

CONCLUSIONS 

Both an understanding of the mechanical spectra of elastomers and the ability 
to model the mechanical properties of elastomers over a broad temperature range 
are important in improving material design and performance. For this reason, 
a hybrid equation which incorporates aspects of both glass transition and ideal 
rubbery behavior was derived. This new equation satisfactorily models the 
mechanical properties of elastomers over a broad temperature range and at  a 
variety of filler loadings. 
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